
Overcoming the Limitations of J2EE
for Financial Services Applications

Financial Applications and Technology

Financial services have always been a powerful catalyst for
technological advances. Seeking out a competitive advantage
motivates—to a large degree—a fi nancial services fi rms’ engagement
in new computer technology. The fi nancial services industry spends
more on IT, as a percentage of revenues, than any other industry.

As commercial Middleware products continue to mature and provide
a more comprehensive framework than their predecessors, IT
organizations fi nd themselves under increasing pressure to deliver
solutions at lower and more predictable cost, thus almost entirely
eliminating the need to develop custom Middleware solutions and
buy into standards, and commercial products.

Today technologies like J2EE-compliant Application Servers, XML,
and relational databases are largely in place and widely accepted by
the fi nancial services industry as mature and production-ready.

The Promise of Application Server Technology

The advent of mature, production-ready J2EE-based Application
Servers has made a strong impact on the way fi nancial services
applications are architected, developed and deployed.

Application Servers incorporate component model management,
transactional integrity, persistence, remoting mechanisms, security,
and other essential services, along with unifi ed confi guration and
diagnostics tools. Together, they assure that the business application
will be more robust, more maintainable, more open, and cheaper to
construct and own than a custom solution.

In addition to development of new applications, Application Server
technologies extend the solution to application integration as well via
the J2EE Connector Architecture (JCA) standard. Finally, Application
Servers provide an excellent vehicle to support such extended
functionality as Web Portals and Business Process Management
(BPM).

International
Systems Group,

(ISG) Inc.
ISG is a leading provider of
strategic consulting, project
management, development and
integration services to Fortune
2000 companies. ISG helps
organizations to implement
l a r g e - s c a l e c ompon en t -
based e-Business solutions
and Enterprise Application
Integration (EAI) projects,
using leading edge Middleware
technologies including J2EE
Application Servers, .NET,
XML, Web Services and
Message Brokers.

ISG also offers unique training
classes that combine theory
with best practices, based
on real-world projects. The
seminars cover technologies
and methodologies for EAI,
e-Business development, a
detailed comparison of J2EE
and .NET, XML, and Web
Services. In addition to these
seminars, ISG offers CIO
Summits, which align business
with technology, as well as,
establish specifi c performance
measurement metrics for IT
within an enterprise.

International Systems
Group (ISG), Inc.

32 Broadway, Ste 414
New York, NY 10004
tel: (212)489-0400
fax: (212)489-1125

web: www.isg-inc.com
email: isg@isg-inc.com

From Chaos to Order —
Delivering e-Business Integration Solutions

2

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

Trading Systems and
Application Servers

Several business drivers have caused the Financial
Services industry to embrace Application Server
technology. The fi rst is the real-time processing
required to support Straight-Through Processing
(STP) mandates. Another important business
factor driving migration of the trading-related
applications to Application Servers is the need to
integrate the enterprise at the systems level for
better risk information, more consistent reference
data, and a more complete view of the customer.

J2EE has found broad recognition in fi nancial
institutions. The majority of enterprise architectures
now incorporate Application Servers, and the
technology has become a platform of choice
for delivery of mission-critical, line-of-business
applications.

However, while alleviating many essential
computing and development problems, J2EE is not
a panacea. Even in recent projects, where the latest
releases of the major Application Servers were
utilized, International Systems Group, Inc. (ISG) had
to develop and integrate additional value-added
J2EE frameworks. These frameworks either provide
additional services not offered by the commercial
Application Servers, or they replace some services
that come with Application Servers with services
that offer much richer functionality.

Examples of typical J2EE frameworks include
central ized logging faci l i t ies , permission
frameworks, unifi ed error handling, and better
encapsulation of the data access layer.

One of the most important requirements, consistently
identifi ed by ISG’s clients as a high priority, is a
better implementation of the data access layer.
This requirement derives from the weaknesses of
the existing J2EE data access layer, EJB, which has
often been identifi ed as a performance bottleneck.
Addressing these performance issues through ad
hoc caching introduces data integrity risks, thus
presenting vulnerability to the rest of the platform.

For trading applications, the integrity and performance
limitations of the J2EE data access layer act as
barriers to the adoption of Application Servers for
trading applications. To provide the best solutions to
its clients, ISG recommends that companies adopt an
architecture, which adds a “best of breed” data access
layer to their J2EE platform. One leading software
vendor providing such a solution is Persistence
Software.

Breaking the Data Access Bottleneck

Over the past decade, International Systems
Group (ISG), Inc has performed many application
development and integration projects in the fi nancial
services industry. This has given us an opportunity to
witness both the evolution of Middleware technologies
as well as the shifting requirements and IT policies of
many organizations.

As we have observed, some commercial Middleware
products have clearly matured and provide a more
comprehensive framework than what previous
technologies—e.g., CORBA—had to offer.

Persistence Software provides effi cient data
management for high-access, time sensitive
applications such as trading and real-time logistics.
For over 10 years, Persistence Software has been
a source of innovative data management software
and has received 7 core patents on its mapping
and caching technology. The introduction of the
EdgeXtend product prompted ISG to take a closer look
at how this technology could provide a commercial
solution for improving the J2EE data access layer.

EdgeXtend is a Data Services product that remedies
the inherent limitations of the J2EE data access
layer. While remaining fully compliant with open
standards and interoperable with the most popular
Application Server implementations (including BEA
WebLogic and IBM WebSphere), EdgeXtend provides
a unique implementation of the data access layer.
It achieves this by combining a custom distributed
cache mechanism with standard Entity Enterprise
Java Beans (EJB) interfaces.

3

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

This white paper illustrates how the EdgeXtend
product allows applications to benefi t from cutting
edge technology without getting locked into a
proprietary vendor-specifi c solution. Without
going into the lower-level details of the product
(detailed product documentation is available
from www.persistence.com/products/edgextend),
this paper inspects EdgeXtend’s approach to data
management and demonstrates how it facilitates
better performance and higher integrity for business
applications in general, and fi nancial applications
in particular.

Examples of Application Server
Deployments

Utilization of an application server platform by a
customer may vary from one instance for another.
For example, the application server may be used
to support a single business application, which in
turn may consist of various front- and back-end
components and integration points, such as, for
example, a Portfolio Management Application that
combines EJB-hosted business logic, servlets-based
portfolio managers GUI, and integration with back-
end data stores such as security warehouse through
an adapter, or with external systems such as risk
engine.

The Application Server may be used as a Web front-
end to the existing Order Management System
(OMS), supporting a business portal that facilitates a
browser-based channel for retail end-user access, or
integration via Web Services with business partners.

Another example of an Application Server-based
architecture is an in-house monitoring system that
aggregates comprehensive trade status from multiple
sources (such as Order Management System, trading
engine, position server etc.). The system then asserts
validity of the business process through a workfl ow
management tool, for example, by automatically
dispatching compliance violation exceptions for a
manual reconciliation.

Finally, an Application Server-based solution may
comprise the elements of all of the above, serving as a
hub in a hub-and-spoke enterprise architecture.

Compliance

Trading

Risk

Session
Bean

Business
Logic MDB

Data
AccessClients

Session
Bean

Application Server
Portfolio Management Application

Security
Info

Position
Data

Portfolio
Info

Business
Partners Data

Access

Users

Portfolio
Data

Trading
Data

Web
Services

Application Server

Web
Application

Compliance Risk Order
Management

Data
Access

Portfolio
Data

Warehouse

Application Server

Messaging

Adapter

Adapter

Workflow
BPM Tool

4

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

Typical requirements for High-
Performance Trading Systems

Any Application Server-based solutions must
provide for:

• High rates of business transactions,
facilitating end-to-end throughput

• Response times demanded by the business
processes

• Near real-time processing guarantees

• Ability to scale along with increased
business loads

• Mission critical, highly available
environment

• Guaranteed high levels of business data
integrity

• Transactional consistency for distributed
state

While the Application Server places high
importance on these issues, architects of the
Application Server-based applications still have
to pay close attention to the throughput reliability
“trade-off” for J2EE applications. This trade-off is
driven by inherent weaknesses of the J2EE data
access layer. Several factors contribute to J2EE’s
performance and integrity issues for real-time,
high-volume operations:

• Every persistent data access operation is
routed through a database call—a heavy
weight operation that takes more time to
complete than almost any other server-
managed operation.

• The inability to optimize data access to
take advantage of advanced database
capabilities such as join queries or array
operations.

• The database schema is frequently auto-
generated by the bean compilers, and is
not optimal (neither from a model nor SQL
perspective).

• Ineffi cient thread pooling for data access
operations creates congestion as application
threads compete for disproportionately
limited database resources.

• Finally, even the straightforward physical
fetch of data from the disk has to go through
the sub-optimal JDBC connection.

As a result of these issues, the data access layer
in trading applications frequently becomes the
performance bottleneck.

A Financial Services Case Example

To illustrate typical requirements for a data access layer
to support real-time fi nancial services applications,
consider a portfolio management application that
extends the following requirements:

• There are three kinds of business entities:
portfolios, positions and security data, whose
cardinality is in hundreds, thousands and
tens of thousands, respectively.

• Any change to a model portfolio causes
automatic changes to its child portfolios,
each of which is subject to a set of business
rules, for example portfolio holdings
compliance rules.

• Benchmark rebalancing automatically
generates actual buy/sell orders for all the
associated portfolios.

• Position updates happen in real time based
on trading activities.

• Security information is sporadically updated
throughout the trading day (such as on an
IPO issue).

• Finally, there are hundreds of portfolio
managers who use the application to actively
manage the portfolios and/or to model
“what-if” scenarios.

5

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

This case example implies that the data access layer
should accommodate hundreds, if not thousands of
concurrent transactions, both of long- and short-
running nature. In addition, it must accommodate
complex entity relationships and the consequent
business data consistency rules (e.g., it is not
permissible to update price factors while playing
out “what-if” scenarios).

Unless it is architected to support these requirements,
the data access layer becomes strained and falls
behind the real-time, highly concurrent application
process. With increasing database congestion,
individual business operations take more time to
complete, decreasing the overall throughput and
response time. This in turn compromises business
processes that require real-time response and
failure scenarios are given a wider window of
opportunity, leading to higher failure risks. In the
worst case, this congestion propagates to external,
otherwise performant business systems.

The Standard Approach to Data
Access Layer Architecture

Under the standard J2EE model, persistent business
data (such as position or security information,
portfolio data or order execution state) can be
managed in one of two ways:

1. Direct JDBC access to the business data from
servlets. This technique provides the architecture
with all the benefi ts of direct control over the data
model and the ability to optimize queries at the SQL
level. However, this approach does not capitalize
on container-provided transactional and failover
guarantees. Nor does it benefi t from decoupling of
the data model from the business logic. In other
words, this approach does not take advantage
of the managed component model, and suffers
from all the ineffi ciencies and dangers of custom
architecting, coding and deployment.

2. Business data encapsulated EJB entity beans.
Under the J2EE specifi cation, the container
manages the mapping between Java components
and the underlying database schema. This approach
suffers from ineffi ciencies, such as the inability to
optimize queries from the database perspective, de-
normalization of the schema, and redundant data
proliferation.

A Solution for the Challenges of
Real-Time Trading Systems

Persistence Software’s EdgeXtend is a product
designed specifi cally to address the ineffi ciencies of
the data access layer in Application Server-based
architectures. It achieves this through several means:

1. EdgeXtend seamlessly fi ts into a J2EE-compliant
architecture, and assures high performance at
the data access layer level without compromising
robustness and integrity of the solution. It supplies
several critical Data Services, such as specialized
entity beans, in-memory cache and distributed cache
synchronization. By following the J2EE standard,
it does not impose proprietary, vendor-specifi c
limitations on the application development or
deployment.

2. EdgeXtend also provides a highly scalable solution
that allows deployment confi gurations not commonly
supported by the Application Server-centric
architectures. An Application Server hosted on a
distributed, dynamic cache rather than a database,
creates a “virtual data server” that eliminates the need
for a replicated database infrastructure, thus saving
signifi cant expense. As a result, the business attains
reduced costs both through elimination of redundant
hardware and software licenses.

In addition to runtime-level facilities, EdgeXtend
also supplies a development-time toolset that further
enhances the robustness and time/cost effectiveness
of the application.

6

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

Using Database Caching to Address
Performance Issues

Performance is typically one of the gravest
concerns of application architecture, and is even
more important in high volume, real time trading
systems. However, a data access layer built on top
of the native Entity EJB approach has inherent
limitations: each data access operation results in
one or several relatively expensive physical disk
I/Os, and frequently, in a very expensive network
call.

The traditional approach of the database vendors is
to expedite data access by minimizing the number
of physical I/O operations by inserting a cache
between the calling application and the physical
store. The cache holds a copy of the recently used
data, which is served back to the application directly
from memory; if the application updates the data,
the data is written into the persistent store, and its
cached version is invalidated.

However, relying on the vendor caching mechanism
for increased performance has two notable
caveats:

1. Signifi cant semantics are lost in mapping
business-level objects to the database-level
relational schema. Consider, for example, an order
instance that encapsulates such information as
order id, CUSIP, side, order type etc. While an order
exists as a singular, atomic object at the EJB level,
it is not necessarily true at the database table level.
Since a database vendor’s caching mechanism
operates at the record, rather than object level,
discrepancies may exist in the cached state of
the objects that map onto more than one record.
Different portions of the business object may or
may not be in memory at any given time, requiring
assembly of the business object from cached and
non-cached fragments, decreasing the effectiveness
of the caching mechanism when compared to an
object-level cache.

In contrast, the EdgeXtend caching mechanism
operates at the level of object entities native to the
business application. Object-to-relational mapping
allows the EdgeXtend cache to hold business data
aggregated exactly the way the business application
expects them, and to serve them back very effi ciently.
In addition, the EdgeXtend caching mechanism is a
supplement, rather than a substitution, to the database
native cache, thus allowing the application to benefi t
from both.

2. Secondly, even when business data is fully cached
by the database and served to the application
without physically accessing a disk, the application
still needs to issue a network (or at best, an inter-
process communications, IPC) call to obtain it.
Depending on the nature of the network, this call
may take a comparatively long amount of time (to
say nothing about retry attempts caused by unreliable
or overloaded networks), resulting in considerable
performance degradation. In contrast, EdgeXtend
co-locates its cache in the same address space as
the application itself, allowing the data to be served
almost instantaneously and eliminating network
bottlenecks.

Another issue affecting the performance is highly
concurrent access to the database (for example
when end users, trading engines and analytical
tools attempt to simultaneously access position
information). In this case, record-level locking on
the frequently changing data will decrease both the
throughput and the response time of the data layer.
EdgeXtend enhances throughput by serving the data
out of memory, which is extremely effi cient for read/
write access synchronization.

Even in the area of writing updates to the database,
EdgeXtend can provide substantial advantages.
EdgeXtend enhances update concurrency by enabling
lazy writes (in other words, batching multiple object
updates into a single database update) to the data
store, and taking advantage of database bulk array
operations whenever possible.

7

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

Thus, compared to standard J2EE implementation
architectures, EdgeXtend provides the following
benefi ts:

• Higher total throughput, in terms of
business transactions performed (such
as orders/day, position lookups/hour,
executions/minute or market data updates/
second).

• Better response time, in terms of time
elapsed from initialization to completion
of a business operation. Note, however,
that the total response time may also be
affected by lengthy computations (such
as risk analysis), or unpredictable delays
caused by external systems (such as
compliance checks).

• Higher number of concurrent operations,
in terms of business fl ows affecting the
same data without loss of stability.

• Better real-time processing, as a measure
of cause-effect delay (for example,
processing quotes stream without
sustained backlog).

Moving forward, performance and scalability
requirements will continue to be driven by business
needs. Consider, for example, the effects of increased
trading volumes caused by web-enabling retail
channels, and the increase in service requests
resulting from application integration and workfl ow
automation.

Using Standard J2EE Entity Beans to
Improve Performance

Performance limitations imposed by the native
J2EE data access model places signifi cant limits on
transaction volumes. These limits in turn increase
deployment complexity by creating a need to deploy
more servers to handle a given load.

While it is feasible to use database replication to
deploy J2EE applications in a distributed environment,
it is not realistic to expect such an application to scale
well. Scaling by distributing the business data across
multiple database instances has an immediate and
unavoidable impact on the integrity of the distributed
state.

Data
Access

Data
Access

Data
Access

Data
Access

Data
Access

Data
Access

Synchronization

A, D, E

B,
C

A,
B,

C,
D,

E

A,
 D

, E

B,
 C

C,
 A

, E

The picture above demonstrates how background physical storage-level synchronization
frequently employed by the database vendors does not account for business application-level
processing context.

Two event producers perform data update operations A, B,C,D and E, in this order, which
result in change to the stored business data. An event consumer relies on the data obtained
through a read operation. In the case of a single data store (left), data update events seen
by the event consumer through the transactional semantics of the database are guaranteed
to be in order and without gaps. In the case of background replication, the event consumer
may observe events out of order. This may lead to a severe integrity compromise (consider,
for example, a trade order for a yet-unknown security in case of automatic trading of IPO

8

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

Some form of run-time synchronization between
disjoint data replicas is necessary—for example,
to ensure that order fi ll status is refl ected
consistently between two entity beans bound to
different database instances. Additionally, keeping
distributed databases synchronized requires
complex engineering (e.g., database replication
latencies may provide inconsistent execution price
information to a price improvement algorithm).

The major dilemma facing data access-intensive
applications is that performance and integrity are
locked in a reverse relationship. Limitations in
the J2EE specifi cation force architects to enhance
scalability by compromising the consistency of the
business data. These same limitations dictate that
ensuring suffi cient data-level integrity constrains
the scalability of the solution. Either case is an
obvious jeopardy to the business needs.

This is not a new problem: Application Server-
enabled architectures (at least those with complexity,
performance and integrity requirements similar to
trading applications) have long been exposed to this
scalability vs. integrity trade-off, and there are two
broad approaches to circumvent the limitations:

1. Scal ing using the real-t ime repl icat ion
facilities provided by all major database vendors.

These utilities establish the link between the database
instances and propagate the changed data between
them in the background in a master-slave manner.
However, how, when and what business data is
synchronized across database replicas is totally out
of application control. As a result, the application
cannot assure consistency of the distributed state
from a business logic perspective, and even though
the physical data may be in sync across different
data store replicas, the business level integrity will
still be compromised (consider, for example, the
consequences of a benchmark data change during
a lengthy risk analysis computation).

2. Custom propagation of the business state at the
business object level via some form of messaging.

This approach provides suffi cient control over when,
what and how the business data is distributed, and is
suffi ciently integrated with the business application
to assure that state propagation is consistent with
the application’s transactional context. However, this
approach is not issue-free: implementation of custom
state replication involves custom design, which
can easily become very involved. The engineering
complexities of the custom-build replication schemes
revolve mostly around the following issues:

• A considerable amount of design work is
required to generalize state concepts (such
as types of business objects, transport
independence, or transparency of operations
from the API point of view). This activity
has signifi cant budget and time-to-market
implications.

• Distributed state upkeep involves complex
engineering issues, such as causality
guarantees, object versioning, gap
detection, and synchronization. Flawed
implementations of custom-designed
replication mechanisms create a potential for
severely compromised application stability
and integrity.

EdgeXtend addresses the performance versus integrity
tradeoff for J2EE applications in a fundamental way.
EdgeXtend proposes a data management model that
incorporates the best features of both approaches:

• Integrates data across multiple instances into
a shared data cache;

• Synchronizes data across multiple data
caches, relieving the application from
explicitly asserting distributed state integrity;

• Propagates data changes synchronously with
the business process;

• Replicates data exclusively by business-level
update events;

• Provides transactional control of data access
in the environment native to the business
logic.

9

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

EdgeXtend achieves this by replacing the standard,
Application Server vendor-issued Entity EJB with a
custom construct, an EdgeXtend Entity Bean.

EdgeXtend Entity Beans implement the standard
J2EE entity bean interfaces. Thus, from the
application point of view, they are indistinguishable
from standard-issue beans. The container can
manage lifecycle events for EdgeXtend Entity
Beans—such as security, transactional demarcation
and instance pooling—using standard interfaces in
a transparent manner.

The internal implementation of the EdgeXtend
Entity Beans, however, employs semantics different
from the standard EJB approach. Instead of querying
or updating a directly connected database, they
perform read/write operations on an in-memory
cache. In turn, the cache is directly connected to
the database and manages the persistent data.

Furthermore, the cache broadcasts data changes
to its peers using a guaranteed synchronization
mechanism. These communications take place
under control of a state propagation protocol,
which assures that the shared state is delivered
in a consistent, reliable fashion. When the remote
cache receives a state update broadcast, it modifi es
its own object data correspondingly, while still
honoring the transactional context and locking
semantics of its own local Entity Beans.

Consider, for example, the portfolio management
application described above. Enabled by EdgeXtend,
the transactional volumes resultant from portfolio
rebalancing, trade executions, market data and
fundamentals updates, and user inquires can
now be scaled across multiple servers without
compromise to either performance or integrity of
the distributed data.

The EdgeXtend data access layer will utilize a
local copy of the business data, dedicated to the
server, assuring maximum throughput rates, and it
will cooperate in synchronizing data changes with
other caches, ensuring that the local copy of the
data is in sync across all server instances.

In other words, EdgeXtend empowers J2EE-based
architectures with a data virtualization model, greatly
reducing the complexity of a scalable solution, while
simultaneously substantially enhancing its robustness
and integrity.

Distributed Cache and Its Benefi ts

In many cases, applications need to be distributed
between several geographically remote locations.
For example, an order management application
may be deployed at North American, European and
Pacifi c locations, and provide all users with a Global
Enterprise view, allowing them to place and manage
orders on global markets.

However, Application Server-centric solutions are
based on a hub-and-spoke architecture, concentrating
all business rules and data within a resource-
intensive data server. Often it is not feasible to base
global operations on a single operations center.
However, J2EE Application Server clusters do not lend
themselves to geographical dispersion.

In such cases, the common deployment solution
is to establish custom communications channels
between application locations, and to route requests
to the location that has the necessary resources (for
example, a trade request originated in the Hong Kong
branch, but placed on the New York Stock Exchange,
would be processed by the New York branch). The cost
implications of such a solution are obvious: increased
development cost resulting from higher complexity,
coupled with higher operations cost ensuing from the
need to support server-to-server links, and potentially,
elevated downtime risks due to diminished service
availability.

Even if a custom propagation mechanism is available,
it is likely to involve redundant data stores. Consider,
for example, the need to support fi xed income details
locally at several geographical locations. This requires
a server and a database at each of the locations—which
may not be desirable from a cost perspective. Each
database instance involves hardware and software
license costs and operations support costs.

10

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

The EdgeXtend distributed cache mechanism helps
to alleviate these concerns. Each geographically
distributed, independent server instance (or an
independent cluster) uses a local cache as the data
layer. Only one (or a few) instances would actually
back up the cache with a physical database, while
others will totally rely on the in-cache data, or, at
most, will use a common database for sporadic
access induced by cache miss.

Since data is propagated between cache instances
seamlessly and in real-time, applications running
on the database-less Application Server instances
will be supplied with a data access layer functioning
effectively on top of a “virtual” database. In
addition, the server instance may easily combine
both a database-less copy of a distributed cache
and a local database for its local, location-unique,
non-shareable data.

Another, although less obvious cost benefi t of the
distributed cache is reduced losses from downtime.
The locally cached version of the business data
can ensure continued operations even when the
application becomes disconnected from its remote
data source due to a network failure.

In fact, a backup server passively caching business data
can also provide a low cost, non-intrusive solution
for failover and disaster recovery. Such a server is
guaranteed to receive a consistent, integral view of
the essential business data in real time with the actual
business operations. Hence, operations switched
over to the backup server will instantaneously and
effortlessly be resumed from the point of failure.

EdgeXtend further mitigates the costs of the distributed
environment by leveraging existing investments in
the technical infrastructure. The data synchronization
between different cache instances requires some form
of a transport mechanism. EdgeXtend is compatible
with existing corporate messaging infrastructures,
such as Tibco Rendezvous, JMS or MQ series.

The Development Cost Benefi ts of
EdgeXtend

The impact any given technology has on the
development effort is frequently overlooked. Since
the development effort translates into upfront costs
directly, and into operational costs indirectly (such as
induced by inadequate functionality or low stability),
it is extremely important to understand the impact of
any new technology.

Server

Data
ba

se

New York
Data Center

Europe
North

America
Asia

Paris
Server

Tokyo
Server

Synchronization

Connectivity

11

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems Group (ISG), Inc.
32 Broadway, Ste 414, New York, NY 10004
tel: (212)489-0400 • fax: (212)489-1125

web: www.isg-inc.com • email: isg@isg-inc.com

EdgeXtend is an open, standards-based solution
that extends the application server functionality. In
this sense, it by no means is a proprietary solution.
Because the functionality of EdgeXtend Entity
Beans is expressed through the standard interfaces,
it has the following key characteristics:

• A solution structured around EdgeXtend
can be easily ported away from EdgeXtend
to an Entity Bean EJB implementation
native to the server (albeit less functional).

• Talent required is largely not different
from the generic J2EE/EJB skill set. This
applies both to development and support
personnel.

The model-driven development capabilities of
EdgeXtend also provide superior design and
development effi ciency. This includes:

• Automatic generation of data access code,
greatly relieving developers from tedious,
error-prone manual tasks, and increasing
effi ciency and quality of the produced
code.

• Development cycle that protects custom
processing logic, ensuring that designers
and developers are not locked into the
solution supplied by the tool.

• Model-driven data access layer design
that enforces object model integrity and
consistency rules throughout the analysis,
design and development phases.

• Intuitive and robust object-to-relational
mapping, an activity notoriously complex
and problem-prone otherwise.

Finally, from the post-development perspective,
EdgeXtend is not an invasive technology:

• From the deployment point of view, it is not
substantially different than the deployment
of a native J2EE application.

• From the confi guration and runtime
maintenance perspective, EdgeXtend does
not require extensive specialization of
knowledge—a few confi guration parameters
determine the run-time behavior of an
EdgeXtend-enabled solution.

• From the perspective of the agile business,
EdgeXtend enhances application fl exibility
through model-driven data access layer
development. In addition, custom-coded
constructs are preserved even when the
underlying data model changes.

From Chaos to Order —
Delivering e-Business Integration Solutions

International Systems
Group (ISG), Inc.

32 Broadway, Ste 414
New York, NY 10004
tel: (212)489-0400
fax: (212)489-1125

web: www.isg-inc.com
email: isg@isg-inc.com

Summary & Conclusions

EdgeXtend benefi ts the enterprise by reducing the total cost of ownership in several
important ways:

• EdgeXtend enables a more performant solution that, while benefi ting from
all the essential guarantees of an Application Server-based architecture, does
not suffer from the inherent scalability limitations of a typical J2EE data
access layer.

• EdgeXtend provides for higher integrity of business data. This translates
both into reduced business risk and into increased quality of service.

• EdgeXtend enables more effi cient deployment architectures that reduce both
capital and operating costs to scale an application.

• EdgeXtend reduces design costs by providing an intuitive approach that
eliminates most of the complexities of custom, home-grown architectures.

• EdgeXtend reduces development costs by providing a set of tools that
increase development productivity and quality of code.

• EdgeXtend leverages investment into technology by using the existing
corporate message bus.

At the same time, migration to EdgeXtend does not entail additional risk factors:

• It is based on well-established and widely accepted standards.

• It does not affect compatibility with other software packages.

• It does not require any additional investment into technology.

• It does not require any exotic skill sets.

• It does not build any vendor dependencies into the application: an
application can be degraded to an EdgeXtend-unaware state in a relatively
straightforward manner—but obviously with the signifi cant implications on
the quality and the operations costs.

Thus, EdgeXtend provides a very viable performance-enhancing, cost effective
solution for J2EE Application Server-based architectures, and especially, for highly
demanding fi nancial services applications.

